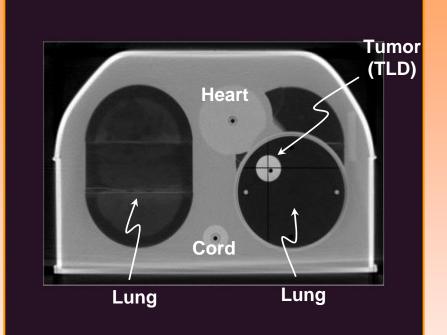
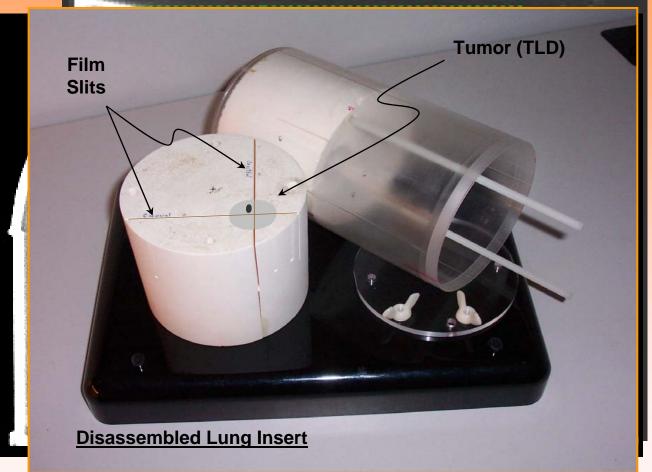
Evaluation of heterogeneity correction algorithms through the irradiation of a lung phantom

P. Alvarez, A. Molineu, N. Hernandez, D. Followill, G. Ibbott UT. M.D.Anderson Cancer Center, Houston, TX


AAPM, Orlando FL, 2006

RPC Lung phantom

Water fillable plastic shell


Include •different structures •imaging and dosimetry insert

RPC Phantom

Tumor dimension

Ovoid shape 3 cm diameter 5 cm long **Densities** Lung = 0.33g/cm³ Heart, cord = 1.1 g/cm³ Cord = 1.31 g/cm³ Tumor = 1.04 g/cm³

Dosimeters TLD and Gafchromic film

Prescription

•Based on RTOG 0236 (SBRT Radioablation study)

- Energies: 4 10 MV
- \geq 7 non-opposing static fields or \geq 340° arc rotation technique.
- SBRT technique.
- 20 Gy/fx to 95% of the PTV
- Homogeneous planning and calculation of M.U.
- Must submit heterogeneous plan based on homogeneous M.U. set

Phantom Results

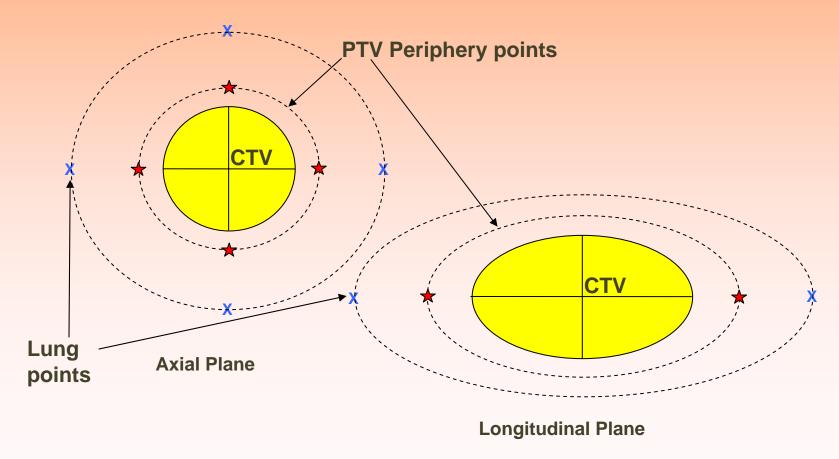
- A total of 21 irradiations were analyzed
- The 6 MV photon beam was used most often
- The TPS used to plan the cases were: Pinnacle,
 BrainLab, XiO, Precise, Eclipse, Ergo and RenderPlan.
- Convolution Superposition algorithm was used most often.

Phantom Results

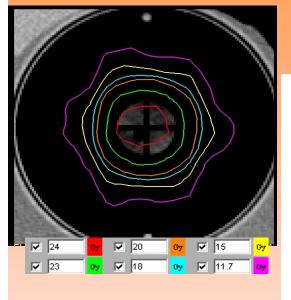
Center of Tumor

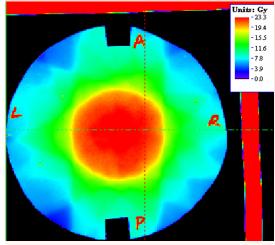
			TPS
TPS	Dose Calc. Algorithm	# irradiations	D _{hetero} / D _{homo}
Precise	Scatter Int. Clarkson	2	1.19 ± 2.6%
BrainLab	Clarkson & Pencil beam	4	1.21 ± 0.1%
Eclipse	Pencil Beam	2	1.19 ± 4.6%
Ergo	3D Convol Poncil Room	1	1.19 ± 0.1%
RenderPlan	Change Clearly, the		1.20
	two group	oings	
Pinnacle	Adaptive convolve	8	1.13 ± 2.1%
XiO	Superposition/Convolution	3	1.12 ± 2.4%

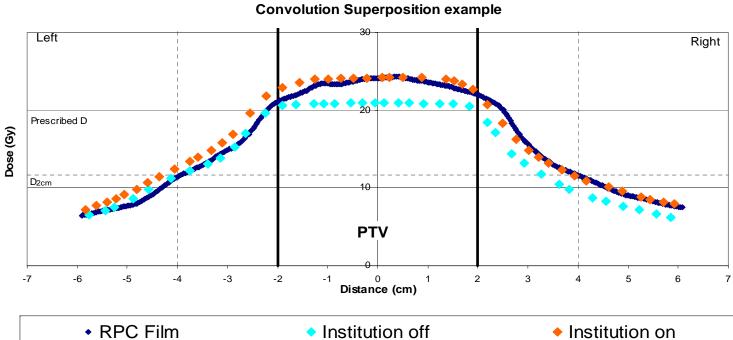
Phantom Results (cont'd)


Center of Tumor

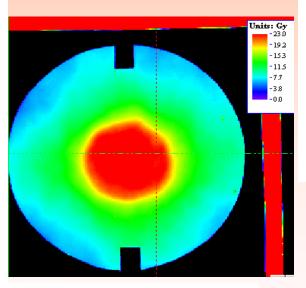
Measured **Dose Calc. Algorithm** TPS **# irradiation D**_{TLD}/**D**_{hetero} Precise **Scatter Int. Clarkson** 2 $0.99 \pm 3.1\%$ **BrainLab Clarkson & Pencil beam** $0.96 \pm 2.7\%$ 4 $0.97 \pm 1.6\%$ **Pencil Beam** 2 **Eclipse 3D Convol. Pencil Beam** $0.98 \pm 3.2\%$ Ergo 1 **Change in primary** attenuation **RenderPlan** 0.92 1 $0.99 \pm 2.3\%$ **Pinnacle** 8 Adaptive convolve **XiO** Superposition/Convolution 0.96 1

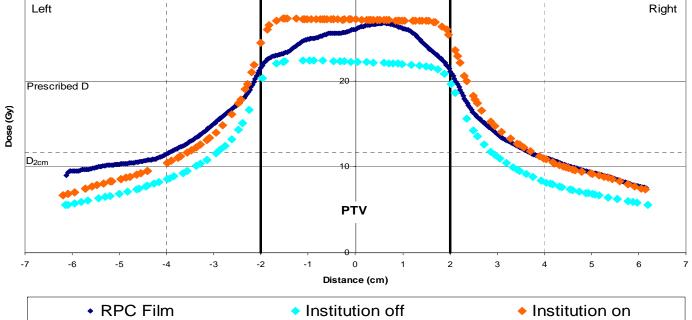

PTV Periphery and Lung Points


PTV = Tumor (CTV) + 0.5 cm in axial plane + 1 cm in longitudinal plane.


Lung constraint: points 2 cm from the PTV

Profile analysis




Right Left Profile

-✓ 15 24 20 Gy бу ✓ 11.7 23 18 Gy Gy

Right Left Profile Clarkson example

Profile analysis

Phantom Results (PTV Periphery)

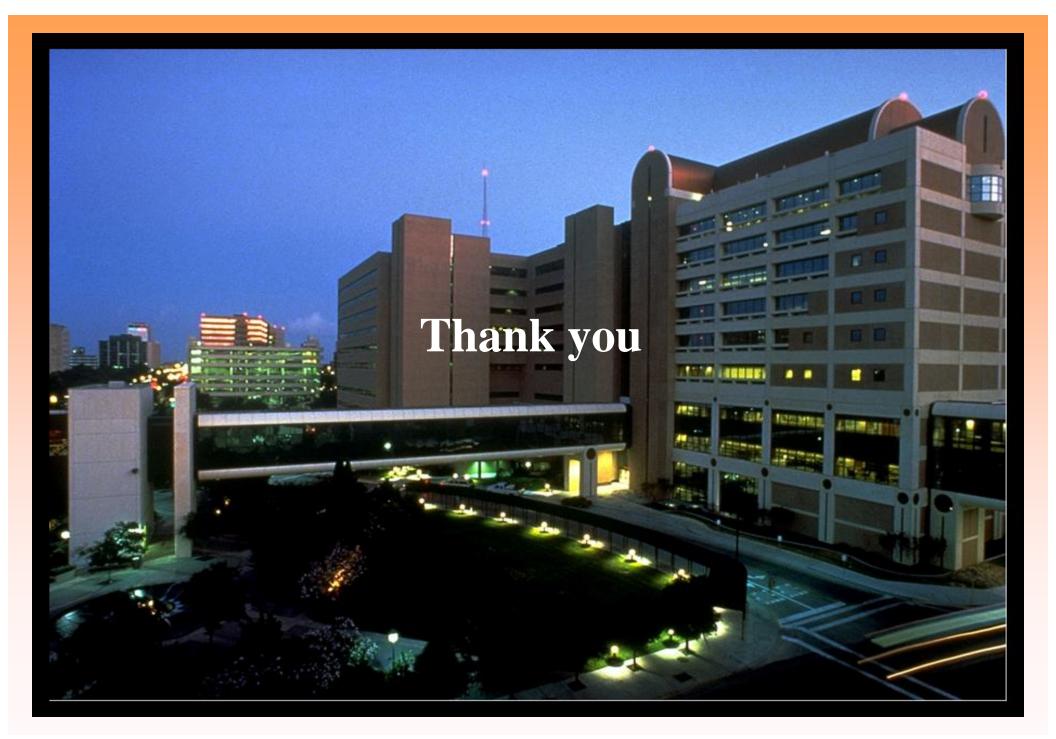
			TPS	
TPS	Dose Calc. Algorithm	# irradiation	D _{hetero/} D _{homo}	
Precise	Scatter Int. Clarkson	2	1.21 ± 2.7%	
BrainLab	Clarkson & Pencil beam	1	1.26 ± 3.5%	
Eclipse	Pencil Beam	2	1.18 ± 4.0%	
Ergo	3D Convol. Pencil Beam	2	1.19 ± 1.8%	
Pinnacle	Adaptive convolve	8	1.04 ± 6.1%	
XiO	Superposition/Convol.	2	1.11 ± 6.4%	
	Two separat groupings aga			
	groupings aga	ain		

Phantom Results (Lung points)

			TPS	
TPS	Dose Calc. Algorithm <i>‡</i>	# irradiation	D _{hetero/} D _{homo} Axial plane	
Precise	Scatter Int. Clarkson	2	1.19 ± 4.2%	
BrainLab	Clarkson & Pencil beam	1	1.23 ± 5.7%	
Eclipse	Pencil Beam	2	1.18 ± 11.2%	
Ergo	3D Convol. Pencil Beam	2	1.20 ± 5.3%	
Pinnacle	Adaptive convolve	8	1.12 ± 6.0%	
XiO	Superposition/Convol.	2	1.14 ± 6.5%	
	Two separat groupings aga			

Phantom Results (PTV Periphery) Measurements

PTV Periphery


measured

TPS	Dose Calc. Algorithm	# irradiation	D _{film/} D _{hetero}	
Precise	Scatter Int. Clarkson	2	0.88	
BrainLab	Clarkson & Pencil beam	1	0.79	
Eclipse	Pencil Beam	2	0.92	
Ergo	3D Convol. Pencil Beam	2	0.84	
Pinnacle	Adaptive convolve	8	0.98	
XiO	Superposition/Convol.	1	0.96	
	Two sepa groupings			

Conclusions

- The average tumor TLD/Inst ratio is 0.97 (range 0.92 to 0.99). Good agreement for Convolution Superposition algorithms in the tumor.
- Large differences exists between the Convolution Superposition
 heterogeneity corrected dose calculations and other algorithms (ratios of 1.13 vs. 1.20).
- Heterogeneity corrected doses at the PTV periphery and lung points are higher than uncorrected doses.
- The Convolution Superposition algorithm calculations agree with the RPC measurements.

